Image Compression using a Direct Solution Method Based Neural Network

نویسنده

  • S. Kulkarni
چکیده

In this paper, we present a direct solution method based neural network for image compression. The proposed technique includes steps to break down large images into smaller windows and to eliminate redundant information. Furthermore, the technique employs a neural network trained by a non-iterative, direct solution method. An error backpropagation algorithm is also used to train the neural network, and both training algorithms are compared. The proposed technique has been implemented in C on the SP2. A number of experiments have been conducted. The results obtained, such as compression ratio and transfer time of the compressed images are presented in this paper.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A New Compression Technique Using an Artificial Neural Network

In this paper, we present a direct solution method based neural network for image compression. The proposed technique includes steps to break down large images into smaller windows and eliminate redundant information. Furthermore, the technique employs a neural network trained by a non-iterative, direct solution method. An error backpropagation algorithm is also used to train the neural network...

متن کامل

آموزش شبکه عصبی MLP در فشرده‌سازی تصاویر با استفاده از روش GSA

Image compression is one of the important research fields in image processing. Up to now, different methods are presented for image compression. Neural network is one of these methods that has represented its good performance in many applications. The usual method in training of neural networks is error back propagation method that its drawbacks are late convergence and stopping in points of lo...

متن کامل

کاهش رنگ تصاویر با شبکه‌های عصبی خودسامانده چندمرحله‌ای و ویژگی‌های افزونه

Reducing the number of colors in an image while preserving its quality, is of importance in many applications such as image analysis and compression. It also decreases memory and transmission bandwidth requirements. Moreover, classification of image colors is applicable in image segmentation and object detection and separation, as well as producing pseudo-color images. In this paper, the Kohene...

متن کامل

Image Backlight Compensation Using Recurrent Functional Neural Fuzzy Networks Based on Modified Differential Evolution

In this study, an image backlight compensation method using adaptive luminance modification is proposed for efficiently obtaining clear images.The proposed method combines the fuzzy C-means clustering method, a recurrent functional neural fuzzy network (RFNFN), and a modified differential evolution.The proposed RFNFN is based on the two backlight factors that can accurately detect the compensat...

متن کامل

Cystoscopy Image Classication Using Deep Convolutional Neural Networks

In the past three decades, the use of smart methods in medical diagnostic systems has attractedthe attention of many researchers. However, no smart activity has been provided in the eld ofmedical image processing for diagnosis of bladder cancer through cystoscopy images despite the highprevalence in the world. In this paper, two well-known convolutional neural networks (CNNs) ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1997